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Abstract

It’s a challenging task to realize cross-modal image synthesis
conditioned on given text descriptions. Compared with previ-
ous stacked architectures, the single-stage synthesis method
has recently progressed due to its lightweight and efficiency.
However, a closer look reveals three flaws in these works.
First, the methods usually don’t achieve sufficient global cross-
modal text-image information fusion both in spatial and chan-
nel, which severely limits the capability of these networks.
Second, existing text encoders often can’t reflect attention
between different words in a text description. Third, previous
single-stage works tend to employ single text-adaptive dis-
criminator to provide weak feedback for generator. To address
these issues, we propose FuseGAN, a global cross-modal fu-
sion baseline for text to image synthesis. Specifically, (i) we
build a new single-stage backbone network and propose a
novel global cross-modal fusion block (FuseBlock), to achieve
global cross-modal information fusion both in spatial and
channel with slight computational cost, and (ii) we propose
an attention-based text encoder that embodies the difference
of each word in a text description, which can be a general
component for text to image synthesis, (iii) we incorporate im-
age contrastive loss and semantic contrastive loss to improve
the fidelity and semantic consistency of generated images.
Extensive experiments demonstrate that FuseGAN achieves
state-of-the-art performance. On CUB datasets, we reach a new
state-of-the-art FID 10.16. On COCO datasets, compared with
the current state-of-the-art model Lafite, we achieve compara-
ble performance (FID 11.92 vs. 8.12) only with 20% model
parameters.

1 Introduction
Text to image synthesis aims to generate realistic images
based on given text descriptions, which is a difficult task due
to its cross-modal nature. Recently, it has gained widespread
attention due to the potential value in various fields (such
as computer-aided design, virtual scene generation, photo
editing). To reach this, many methods have been proposed,
including: Generative Adversarial Networks (Goodfellow
et al. 2014), Diffusion Models (Gu et al. 2022), variational
auto-encoders (Kingma and Welling 2014), etc. Among them,
generative adversarial networks have achieved notable suc-
cess and recently achieved promising results (Zhang et al.
2021; Zhou et al. 2022; Xia et al. 2021; Tao et al. 2022).

Due to the instability of GANs, previous methods mainly
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Figure 1: Performance of different text to image synthesis
methods on CUB datasets. Lower FID means better. Our
proposed FuseGAN achieves a new state-of-the-art FID with
fewer model parameters.

adopt stacked architecture, employing multiple generator-
discriminator pairs to gradually complete image synthesis
from coarse to fine (Zhang et al. 2017, 2018; Xu et al. 2018;
Li et al. 2019; Ruan et al. 2021). However, there are two
problems with the stacked methods. First, the stacked archi-
tecture introduces entanglement, which means the generated
images look like a combination of visual features from previ-
ous stages. Second, the stacked structure often utilizes cross-
modal attention for text-image fusion, which imposes a huge
training burden due to its high computational cost. To address
these issues, single-stage architecture has been proposed (Tao
et al. 2020) and received enormous attention. Compared with
stacked architecture, the single-stage architecture utilizes sin-
gle generator-discriminator pair for training. In this work, we
follow the single-stage model architecture.

However, a careful study of the existing methods reveals
the following three issues. First, the existing methods usually
don’t achieve sufficient global cross-modal text-image infor-
mation fusion both in spatial and channel, which severely
limits the capabilities of these networks. In the past, there
were three methods to achieve cross-modal text-image fusion:
concatenation, cross-modal attention and Affine operation.



The method of concatenation (Reed et al. 2016b) directly
concatenate textual features and visual features together. Ob-
viously, this method can’t achieve effective text-image fusion.
Although the previously adopted cross-modal attention (Xu
et al. 2018) extracts long-range relationships and achieves
spatial fusion well, it can’t achieve cross-modal fusion be-
tween channels and brings high computational cost. More-
over, the Affine operation separately fuses textual features
into each channel of visual feature maps, which has shown
its advantages in recent research (Ye, Liu, and Tan 2022;
Liao et al. 2022). However, it ignores the fusion on spatial
which treats spatial pixels equally. More importantly, these
works all employ convolutional neural networks as backbone
network. Convolutional networks can capture local visual fea-
tures well, but it may not be effective for global cross-modal
text-image fusion (Guo et al. 2022; Wu et al. 2021).

Second, existing text encoders often can’t reflect attention
between different words in a text description (Radford et al.
2021; Schuster and Paliwal 1997). Most of previous works
utilizes bidirectional LSTM to encode text description. Com-
pared with the original fully-connected layer encoder (Reed
et al. 2016b), the LSTM-based text encoder can better cap-
ture the context relationship. But it ignores the difference of
different words in a text description, which will cause some
semantically irrelevant words to impose an impact on model,
resulting in poor performance. Third, previous singel-stage
works prefer to employ single text-adapative discriminator to
provide weak feedback for generator (Ye, Liu, and Tan 2022;
Tao et al. 2022). It was insufficient to supervise generator to
synthesis photo-realistic and text-matching images. We argue
that more powerful supervision should be introduced in order
to generate desired images.

To solve these, we propose FuseGAN, which aims to
achieve global cross-modal text-image fusion both in spa-
tial and channel. For the first issue, we propose a novel global
cross-modal fusion block (FuseBlock), to achieve global
cross-modal information fusion both in spatial and chan-
nel with slight computational cost. Furthermore, inspired
by StyleGAN (Karras, Laine, and Aila 2019) and ResNet
(He et al. 2016), we build a new single-stage backbone net-
work (Details in Fig. 2(a)). FuseGAN unlocks the ability
to achieve global cross-modal text-image fusion only with
slight computational cost. For the second issue, we propose a
novel attention-based text encoder. Before extracting global
sentence vectors using a bidirectional LSTM, we first refine
the word embedding using a vanilla Transformer encoder in
order to give each word different weight. By doing so, our
attention-based text encoder can not only learn the context
relationships but also distinguish the difference between dif-
ferent words. Besides, our attention-based text encoder can be
a general component for other text to image synthesis works.
For the third issue, we introduce image contrastive loss and
semantic contrastive loss to improve the fidelity and semantic
consistency of generated images. Specifically, we addition-
ally introduce LPIPS loss and DAMSM loss to supervise
generator. What’s important, we can regard SAFM as spatial
mixer and CAFM as channel mixer. They all can be replaced
by the components with same role to further improve model
capability. From this perspective, we hope FuseGAN can

become a new global cross-modal fusion baseline to inspire
future research.

In summary, our contributions are as follows:

• We propose FuseGAN by building a new single-stage
backbone network and introducing a novel cross-modal
fusion block (FuseBlock), which can achieve global cross-
modal text-image fusion more effectively and deeply both
in spatial and channel with slight computational cost.

• We propose an attention-based text encoder that embodies
the difference of different words in description, which can
be a general component for text to image synthesis. Our
attention-based text encoder can not only learn context
relationships in descriptions, but also can distinguish the
difference between different words.

• We introduce image contrastive loss and semantic con-
trastive loss to improve the fidelity and semantic consis-
tency of generated images.

• Extensive experiments demonstrate that our proposed
FuseGAN achieves the state-of-the-art results. On CUB
dataset, we reach a new state-of-the-art FID 10.16. On
COCO dataset, compared with current state-of-the-art
model Lafite (Zhou et al. 2022), we achieve comparable
performance (FID 11.92 vs. 8.12) only with 20% model
parameters.

2 Related Work
Reed et al. first proposed employing conditional generative
adversarial networks to generate images under text conditions
in 2016 (Reed et al. 2016a), which opened the door to text to
image synthesis. To further improve the quality of generated
images, Zhang et al. proposed stacking multiple generator-
discriminator pairs to gradually generate high-quality images
from coarse to fine under text conditions (Zhang et al. 2017).
During training, multiple generator-discriminator pairs are
required to coordinate to generate high-quality images. Af-
ter that, Xu et al. proposed AttnGAN (Xu et al. 2018) to
achieve word-level fine-grained generation by introducing a
word-level attention mechanism. In addition, AttnGAN also
proposes DAMSM to supervise generator to synthesis im-
ages that are semantically consistent with the corresponding
texts. Zhu et al. proposed using a dynamic memory network
to purify the initial image. Li et al. proposed ControlGAN
(Li et al. 2019) based on the word-level spatial attention and
channel attention, in order to generate controllable and more
realistic images. For a period of time, the stacked architecture
has become the basic method for text to image synthesis.

To overcome the limitations of stacked architecture, Ming
et al. proposed DF-GAN (Tao et al. 2020), which aims to em-
ploy single generator to complete text to image synthesis. In
addition, he also proposed utilizing MA-GP to generate text-
matching images. The following SSA-GAN (Liao et al. 2022)
and RAT-GAN (Ye, Liu, and Tan 2022) also adopted single-
stage architecture. SSA-GAN proposes semantic-spatial con-
dition batch normalization, which employs mask map to
overcome the problem of insufficient spatial fusion in DF-
GAN. RAT-GAN proposes Recurrent Affine Transformation
to model long-range dependencies between fusion blocks.
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Figure 2: The architectures of FuseGAN. Our proposed
FuseGAN builds a new single-stage backbone network and
consists of 7 FuseBlocks from 42 to 2562, which can achieve
global cross-modal text-image fusion both in spatial and chan-
nel with slight computational cost. The FuseBlock consists
of three modules: Spatial Attention Fusion Module (SAFM),
Channel Attention Fusion Module (CAFM), and Affine mod-
ule. The “Sentence” stands for sentence vector encoded by
our proposed attention-based text encoder.

Our proposed FuseGAN also adopts the single-stage archi-
tecture. Different from all previous works, we build a new
single-stage backbone network and propose a novel cross-
modal fusion block (FuseBlock), unlocking the ability to
achieve global cross-modal text-image fusion both in spatial
and channel with slight computational cost.

3 Method
In this paper, we propose FuseGAN, to achieve global cross-
modal text-image fusion for text-to-image synthesis. We will
introduce FuseGAN in this section.

3.1 Model Overview
The architecture of generator is shown in Fig. 2(a). We follow
the single-stage architecture (Tao et al. 2020). First, inspired
by StyleGAN (Karras, Laine, and Aila 2019), we replace ran-
dom noise with a learnable constant as the input to the first
layer. Second, we build an innovative basic computational
block (called FuseBlock) to unlock the ability of global cross-
modal text-image fusion with slight computational cost. Fuse-
Block includes three modules: Affine, SAFM, and CAFM.
Given the widespread success of ResNet (He et al. 2016),
FuseBlock adopts the residual design. Thus, unlike previous
works, we build a new single-stage backbone network, which
we called style-based backbone network.

We first generate a 100-dimensional random noise sampled
from Gaussian distribution. Then, the text descriptions are
encoded to get sentence vector by a pretrained attention-
based text encoder (Details in Fig. 3(b)). We concatenate
random noise with sentence vector to get the input to model.
From 42 to 2562, FuseGAN consists of 7 FuseBlocks. The
mathematical form of FuseBlock is shown below:

ĥl = SAFM(AFF(hl−1, s)) + hl−1,

hl = CAFM(AFF(ĥl, s)) + ĥl,
(1)

where hl is the output feature map of FuseBlock l, AFF is
Affine module, SAFM and CAFM will be introduced in next
subsection, respectively. After SAFM and CAFM, we employ
a convolution network to align channels of feature maps.

For the Affine module (See Fig. 2(c)), following previous
works (Tao et al. 2022; Liao et al. 2022), we stack two MLPs
(Tolstikhin et al. 2021) to predict channel-wise scaling pa-
rameters and shifting parameters. The mathematical form is
shown below:

γ = MLP(s),
β = MLP(s),
x̂i = γi · xi + βi,

(2)

where s is the input of text conditions, γ is the scaling param-
eter, β is the shifting parameter, x̂i and xi represent the i-th
channel of output and input feature maps, respectively.

3.2 Global Spatial-Channel Text-Image Fusion
The ability of cross-modal fusion can significantly affect
model performance, which hasn’t received deserved atten-
tion in previous works. To solve it, we propose FuseGAN to
perform global cross-modal text-image fusion. In this subsec-
tion, we detail three novel components of FuseGAN: Spatial
Attention Fusion Module, Channel Attention Fusion Module,
and Global Spatial-Channel Fusion Discriminator.

Spatial Attention Fusion Module The Spatial Attention
Fusion Module aims to promote the spatial fusion of cross-
modal information and enhance long-range modeling ability
in spatial. Most previous works solely employed convolu-
tion operations to establish local receptive fields, ignoring
the long-range information dependencies. Besides, the pre-
viously employed cross-modal attention mechanism brings
a heavy training burden due to its expensive computational
cost. To overcome those, we propose a simple but effective
lightweight spatial fusion component, Spatial Attention Fu-
sion Module (Details in Fig. 2(b)).

First, we employ a 3×3 convolution network with output
channels being 3, followed by a ReLU function. Compared
with the max pooling and average pooling operations used
by CBAM (Woo et al. 2018), the convolution network with
output channels being 3 has better adaptability. Then, stack-
ing a 7×7 convolution network with padding being 3, stride
being 1, and output channel being 1. Compared with the
3×3 convolution kernel, the convolution kernel of 7×7 has a
larger local receptive field which can capture longer depen-
dencies. Followed sigmoid functions scale all values between
(0,1). The obtained result is multiplied pixel-wisely with orig-
inal feature map to complete spatial fusion. Compared with



C
on
vs

D
ow
nB
lo
ck

SA
FM

C
A
FM

C
on
vs

×6

Attention-based
Text Encoder

ℒ#$%

Spatial replication

Global Spatial-Channel Fusion Module

(a) Global Spatial-Channel Fusion Discriminator

this is a small light green 
bird with a small beak and 
black tarsus and feet.

Embedding

this is a small light green bird with a 
small beak and black tarsus and feet.

Bi-LSTM

Transformer
Encoder

Sentence Vector

(b) Attention-based Text Encoder

Figure 3: (a) Global Spatial-Channel Fusion Discriminator: we achieve global cross-modal text-image fusion in discriminator.
(b) Attention-based Text Encoder: before Bi-LSTM, we stack a vanilla Transformer encoder (Vaswani et al. 2017) to reflect
attention between words.

cross-modal attention mechanism, we achieve global spatial
text-image information fusion only with slight computational
cost. Furthermore, to verify the novelty of SAFM, we con-
duct ablation study with spatial attention module (Woo et al.
2018) and self-attention (Vaswani et al. 2017) (See Table 2).

Channel Attention Fusion Module The Channel Atten-
tion Fusion Module aims to facilitate cross-modal fusion and
explicitly model the inter-dependencies between channels.
The previous Affine-based method is to separately fuse text
conditions to each channel, and then stack a convolution net-
work for local modeling. The sole Affine-based method can’t
realize sufficient global cross-modal fusion between channels.
Inspired by SE-Net (Hu, Shen, and Sun 2018), we propose
Channel Attention Fusion Module (Details in Fig. 2(d)).

In Channel Attention Fusion Module, we first stack a 3×3
DW-Conv operation followed by a ReLU function to extract
channel-wise features. Then, we employ average pooling
to scale the size of feature map to C×1×1. After that, we
employ two fully connected layers to get the initial weights
for each channel. The followed sigmoid function scales the
initial weights of each channel between (0,1). The obtained
result is channel-wisely multiplied with original feature map
to complete the fusion between channels. Besides, to verify
the novelty of CAFM, we also conduct ablation study with
channel attention module (Woo et al. 2018) and SE block
(Hu, Shen, and Sun 2018) (see Table 2).

Moreover, we can regard SAFM as spatial mixer and
CAFM as channel mixer. They all can be replaced by the
components with same role to further improve model capabil-
ity. From this perspective, we hope FuseGAN can become a
global cross-modal fusion baseline to inspire future research.

Global Spatial-Channel Fusion Discriminator The archi-
tecture of discriminator is shown in Fig. 3(a). In discriminator,
most previous works directly concatenate text and image fea-
ture maps, followed by a series of convolution operations,
which can’t achieve sufficient information fusion. The re-
cently proposed RAT-GAN (Ye, Liu, and Tan 2022) takes
the issue into account, introducing spatial attention in the dis-
criminator. However, RAT-GAN only enhances the fusion in
spatial and works on text feature maps. To enhance global fu-
sion in discriminator, we propose Global Spatial-Channel Fu-

sion Discriminator. Specifically, after several down-sampling
blocks, we introduce SAFM and CAFM to facilitate cross-
modal information fusion. Compared with previous works,
our discriminator can significantly improve cross-modal fu-
sion ability.

3.3 Attention-based Text Encoder
Converting text descriptions into embedding is an important
prior work for generating images conditioned on natural lan-
guage. The previous bidirectional LSTM text encoder has
shown its effectiveness in many works, which can capture
context relationships in text descriptions well. But it ignores
the difference between different words, which leads to some
semantically irrelevant words also having an impact on the
model. To solve this, we propose attention-based text encoder,
which aims to reflect the attention between different words
(Details in Fig. 3(b)).

First, we get the initial word matrix e ∈ Rn×d for text de-
scription, where n is the number of words and d is the length
of word embedding, respectively. Then the word matrix e is
transformed by fully connected layers. And the self-attention
function occurs among the transformed results. The mathe-
matical form is as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V. (3)

In fact, we employ multi head self-attention (Vaswani et al.
2017), which improves the representation space of model. Di-
viding Q, K, and V into h heads in parallel for dot product
attention. The dot-product attention for each head is com-
puted separately. The mathematical form is as follows:

MHSA = Concat(head1, ..., headh)W
O,

headi = Attention(QWQ
i ,KW

K
i , V WV

i ),
(4)

where WO is a learnable matrix, respectively. Then a feedfor-
ward network is used to capture relationships within words.
Finally, stacking a bidirectional LSTM to get sentence vec-
tor. In this way, our proposed attention-based encoder can
better focus on semantically relevant words. Our proposed
attention-based text encoder can be a general component for
other text to image synthesis works.



Method CUB COCO

FID↓ IS↑ R-precision↑ FID↓ R-precision↑ NoP↓
StackGAN++ (Zhang et al. 2018) 15.30 4.04 ± .06 - 81.59 - 103M
AttnGAN (Xu et al. 2018) 23.98 4.36 ± .03 0.246 35.49 0.183 169M
DM-GAN (Zhu et al. 2019) 16.09 4.75 ± .07 0.287 32.64 0.236 46M
MirrorGAN (Qiao et al. 2019) 18.34 4.54 ± .17 - 34.71 - 170M
ControlGAN (Li et al. 2019) 13.92 4.58 ± .09 0.308 33.58 0.248 200M
DAE-GAN (Ruan et al. 2021) 15.19 4.42 ± .04 0.321 28.12 0.257 49M

XMC-GAN (Zhang et al. 2021) - - - 9.33 - 166M
Lafite (Zhou et al. 2022) 10.48 5.97 ± .- - - 8.12 0.318 75M
DF-GAN (Tao et al. 2022) 14.81 5.10 ± .- - 0.306 19.32 0.278 19M
SSA-GAN (Liao et al. 2022) 15.61 5.17 ± .08 0.326 19.37 0.264 110M
RAT-GAN (Ye, Liu, and Tan 2022) 13.91 5.36 ± .20 0.368 14.60 0.298 186M

FuseGAN (ours) 10.16 5.99 ± .12 0.386 11.92 0.326 15M

Table 1: The results of IS, R-precision, FID and NoP compared with the state-of-the-art methods on the test set of CUB and
COCO. ↓ means lower is better. ↑ means higher is better.

3.4 Loss Function
Previous single-stage works tend to employ single text-
adaptive discriminator to provide weak feedback for gen-
erator. To generate more realistic and text-matching images,
we introduce image contrastive loss and semantic contrastive
loss.

Image Contrastive Loss To better guide the generator by
comparing the difference between the generated and origi-
nal image, we introduce image contrastive loss in addition.
Specifically, we employ perceptual loss (Johnson, Alahi, and
Fei-Fei 2016). The mathematical form is as follows:

Limage = ||F(x)− F(x̂))||22, (5)

where F is the pretrained VGG network (Simonyan and Zis-
serman 2015), x is the original image, and x̂ is the generated
image, respectively.

Semantic Contrastive Loss To promote the semantic con-
sistency between the generated image and text description,
we introduce the DAMSM loss (Xu et al. 2018). The mathe-
matical form is as follows:

Lsemantic = DAMSM(s, x̂), (6)

Where DAMSM is the pretrained aligned tool, s is the text
description, and x̂ is the generated image, respectively.

Overall Loss Similar to DF-GAN, we use hinge loss with
MA-GP (Tao et al. 2020) as the discriminator loss. The spe-
cific mathematical form of discriminator loss is as follows:

LD
adv = Ex∼Pdata

[max(0, 1− D(x, s))]

+
1

2
Ex∼PG

[max(0, 1 + D(x̂, s))]

+
1

2
Ex∼Pdata

[max(0, 1 + D(x, ŝ))],

(7)

where x is the real image, x̂ is the generated image, s is the
matched sentence, ŝ is the mismatched sentence, and D is the

discriminator, respectively. The training loss of the generator
is as follows:

LG = λ1Lsemantic + λ2Limage + LG
adv,

LG
adv = −Ex∼Pdata

[D(x̂, s)],
(8)

where λ1 and λ2 are hyperparameters, respectively.

4 Experiments
In this section, we first introduce the datasets, training details,
and evaluation details. Then, we evaluate FuseGAN quali-
tatively and quantitatively on two challenging datasets and
conduct ablation study to get an insight of the effectiveness
of every module we proposed.

Datasets We conduct our experiments on two challenging
datasets CUB (Wah et al. 2011) and COCO (Lin et al. 2014).
The CUB bird datasets (200 categories) contain 8855 training
images and 2933 testing images. Each image has 10 text
descriptions. The COCO datasets contain 80k images for
training and 40k images for testing. Each image has five
language descriptions.

Training details Our model is implemented in PyTorch.
The Adam optimizer (Kingma and Ba 2015) with β1 = 0.0
and β2 = 0.9 is used in the training. The learning rate is set to
0.0001 for generator and 0.0004 for discriminator according
to TTUR (Heusel et al. 2017). The hyper-parameters λ1 and
λ2 are set to 0.02 and 0.004, respectively.

Evaluation Metric We choose Fréchet Inception Distance
(FID) (Heusel et al. 2017), Inception Score (IS) (Salimans
et al. 2016), and top-1 R-precision (Xu et al. 2018) to eval-
uate the performance of our work. For FID, it computes the
Fréchet distance between the distribution of the generated
images and real-world images in the feature space of a pre-
trained Inception v3 network (Szegedy et al. 2016). For IS,
it computes the Kullback-Leibler (KL) divergence between
a conditional distribution and marginal distribution. Lower
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Figure 4: Qualitative comparison between AttnGAN (Xu et al. 2018), DF-GAN (Tao et al. 2022), and our proposed FuseGAN
conditioned on text descriptions from the test set of COCO datasets (1st - 4th columns) and CUB datasets (5th - 8th columns).

This bird has a green belly and breast.

This bird has a white belly and breast, with a blue crown and nape. The small bird has a dark tan head and a light grey body.

This bird has a black head with an orange belly.

Figure 5: Diversity image generation examples of FuseGAN on CUB datasets. Our proposed FuseGAN can generate multiple
text-matching and photo-realistic images on same text description. Each caption corresponds to four images.

FID and higher IS mean model achieves better performance.
For R-precision, we use CLIP (Radford et al. 2021) to calcu-
late the cosine similarity between original image and given
description. To compute these, each model generates 30,000
images (256×256 resolution) from text descriptions randomly
selected from test datasets.

Following previous works (Liao et al. 2022; Tao et al.
2022), we do not use IS on COCO datasets because it can’t
evaluate the image quality well. Moreover, we evaluate the
number of parameters (NoP) to compare the model size with
other methods.

4.1 Quantitative Evaluation
As shown in Table 1, we conduct the quantitative compari-
son between our proposed FuseGAN and previous stacked
or single-stage methods. On two challenging datasets, we
achieve state-of-the-art performance with fewer model pa-
rameters.

On CUB datasets, we reach a new state-of-the-art FID

10.16. Compared with the previous singe-stage baseline DF-
GAN (Tao et al. 2022), our FuseGAN decreases the FID met-
ric from 14.81 to 10.16 and improves the IS metric from 5.10
to 5.99, R-precision from 0.306 to 0.386. On COCO datasets,
compared with current state-of-the-art model Lafite (Zhou
et al. 2022), our proposed FuseGAN achieves comparable
performance (FID 11.92 vs. 8.12) only with 20% model pa-
rameters. Compared with DF-GAN, our FuseGAN decreases
the FID metric from 19.32 to 11.92 and improves R-precision
from 0.278 to 0.326. And compared with SSA-GAN, RAT-
GAN, and other stacked methods, FuseGAN demonstrates
outstanding performance.

4.2 Qualitative Evaluation
As shown in Fig. 4, we conduct the qualitative comparison
between our proposed FuseGAN, the single-stage method
DF-GAN (Tao et al. 2022) and the stacked method AttnGAN
(Xu et al. 2018). Compare with other works, our generated
images are more photo-realistic and text-matching. For ex-



Ablation Variant FID ↓ R-precision ↑
Baseline FuseGAN (ours) 10.16 0.386

Component

Previous Single-stage Baseline (Tao et al. 2022) 14.81 0.306
+ Style-based Backbone Network 13.96 0.328
+ SAFM & CAFM 11.88 0.362
+ Contrastive Loss 10.90 0.368
+ Attention-based Text Encoder 10.16 0.386

SAFM
SAFM w/o 7×7 Conv 13.64 0.346
SAFM→Multi Head Self Attention (Vaswani et al. 2017) 10.04 0.366
SAFM→ Spatial Attention Module (Woo et al. 2018) 11.88 0.357
SAFM→ Convolutional Block Attention Module (Woo et al. 2018) 13.88 0.345

CAFM
CAFM w/o DW-Conv 12.48 0.375
CAFM→ SE Block (Hu, Shen, and Sun 2018) 12.97 0.363
CAFM→ Channel Attention Module (Woo et al. 2018) 12.56 0.371
CAFM→ Convolutional Block Attention Module (Woo et al. 2018) 13.43 0.381

Affine

Affine→ Concat (Reed et al. 2016b) 18.96 0.287
Affine→ CBN (Brock, Donahue, and Simonyan 2019) 13.48 0.331
Affine→ AdaIN (Karras, Laine, and Aila 2019) 12.64 0.361
Affine→ AFF Block (Tao et al. 2022) 11.86 0.377

Table 2: Ablation Study of different components, SFAM, CAFM, and Affine on the test set of CUB. ↓ means lower is better. ↑
means higher is better.

ample, in the 6th column, given the text “This orange and
black small bird has a straight pointed beak”, the image gener-
ated by FuseGAN has all the mentioned attributes. However,
the image generated by DF-GAN does not reflect “straight
pointed beak” and the image generated by AttnGAN is a little
blurry. In the 8th column, FuseGAN produces the desired
image, but other methods don’t produce clear images to meet
all attributes. Besides, as shown in Fig. 5, FuseGAN can
generate a variety of realistic images on same text condition.

4.3 Ablation Study
As shown in Table 2, to verify the superiority of each compo-
nent in our proposed FuseGAN, we deploy our experiments
on the CUB test set (Wah et al. 2011).

Baseline The baseline is our proposed FuseGAN, a novel
single-stage backbone network to achieve global cross-modal
text-image fusion with slight computational cost.

Effectiveness of Component We start from previous
single-stage baseline (Tao et al. 2022) and add each compo-
nent sequentially. The style-based backbone network, SAFM
& CAFM, contrastive loss, and attention-based encoder are
added in order. It shows that each component improves per-
formance, which verifies the effectiveness of our proposed
each innovative modules.

Effectiveness of SAFM We ablate our proposed Spatial
Attention Fusion Module. Compared with spatial attention
module (Woo et al. 2018), CBAM (Woo et al. 2018), our
SAFM achieves better performance. Compared with multi
head self-attention (Vaswani et al. 2017), although our perfor-
mance is slightly worse, SAFM has lighter training burden.
Furthermore, we also verify the effectiveness of the employed

7×7 convolution, which can bring larger local receptive field
to model.

Effectiveness of CAFM We ablate our proposed Channel
Attention Fusion Module. Compared with channel attention
module (Woo et al. 2018), CBAM (Woo et al. 2018), SE
Block (Hu, Shen, and Sun 2018), our CAFM achieves better
performance. Importantly, compare with similar modules SE
Block, our proposed CAFM is more suitable for the current
network. We also try to replace CAFM or SAFM with CBAM
but do not achieve better performance. Furthermore, we ver-
ify the effectiveness of DW-Conv, which can better extract
channel-wise information.

Effectiveness of Affine Following previous works, we ex-
plore the effectiveness of Affine module. Compared with the
previously used Concat (Reed et al. 2016b), CBN (Brock,
Donahue, and Simonyan 2019), AdaIN (Karras, Laine, and
Aila 2019), AFF Block (Tao et al. 2020), the Affine module
is more suitable for our proposed FuseGAN.

5 Conclusion
In this paper, we propose FuseGAN, a global cross-modal
fusion baseline for text to image synthesis. We build a new
single-stage backbone network and propose a novel fusion
block (FuseBlock). Furthermore, we propose an attention-
based text encoder to reflect the attention of different words.
We introduce image contrastive loss and semantic contrastive
loss to generate desired images. Extensive experiments on
two challenging datasets demonstrate that FuseGAN achieves
state-of-the-art performance with fewer model parameters. In
the future, we hope to explore more efficient fusion blocks to
further improve model capability.
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