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Abstract

Although transformers have shown impressive perfor-
mance in most downstream vision tasks, they haven’t yet
fully demonstrated their expressivity in cross-modal text-
to-image synthesis. In this paper, we seek to explore em-
ploying transformers to build a generative adversarial net-
work for text-to-image synthesis. However, by careful study
of transformers and related works, there are three ob-
stacles. First, the standard multi-head attention mecha-
nism is usually insufficient to capture high-frequency sig-
nals (local details) and brings huge training burden due
to its quadratic computational complexity, which hinders
its application to broader tasks severely. Second, the text-
image fusion modules adopted by previous works almost
don’t achieve high-efficient cross-modal text-image fusion,
which limits model capacity heavily. Third, the semantic
alignment tool DAMSM ignores the representation learn-
ing of text features, which blocks the generator from fur-
ther generating text-matching images. To address these,
we propose TransT2I, a transformer-based GAN for text-
to-image synthesis. In particular, we propose (i) Mix At-
tention, which can simultaneously capture global relation-
ships and local details while enjoying linear computational
complexity; (ii) Conditioned Fusion Instance Normaliza-
tion (ConIN), which can achieve effective cross-modal text-
image fusion with slight computational cost; (iii) Deep Text-
Image Contrastive Model (DTMCM), which can better re-
flect the learning of text features. Extensive experiments
on three challenging benchmarks demonstrate the state-of-
the-art performance of TransT2I over prior text-to-image
works, proving the promise of transformer-based GAN for
text-to-image synthesis. Additionally, more experiments and
analyses are conducted in the Supplementary Material.

1. Introduction
In recent years, synthesizing images from natural lan-

guage descriptions has gained widespread attention due to
its potential value in many fields, such as computer-aided
design, virtual scene generation, photo editing. To reach

this, many methods have been proposed, including: Gen-
erative Adversarial Networks [11], Diffusion Models [12],
Variational Auto-Encoders [21], etc. However, it still has a
big gap between current results and desired performance.

Inspired by the outstanding performance in NLP [47,
2, 7], vision transformers have been proposed [10, 46]
and achieved superior results in numerous vision tasks
[26, 49, 9, 16]. This is largely attributed to its strong ca-
pability of modeling long-range dependencies in the data
with self-attention mechanism. Its success has motivated
researchers to apply it to broader tasks. Recently, some
transformer-based unconditional GANs have made progress
[16, 57, 61, 29, 22], but it‘s still waiting to be explored by
transformer-based GAN for text-to-image synthesis.

In this paper, we aim to explore the key ingredients when
employing transformers to build a powerful GAN for cross-
modal text-to-image synthesis. To achieve this, we found
there are three obstacles. First, the standard multi-head at-
tention mechanism is usually insufficient to capture high-
frequency signals and brings huge train burden due to its
quadratic computational complexity. Vision transformers
are beneficial to capture low-frequency signals [30, 41, 28],
which indicates global structures and shapes. While it is
usually insufficient to capture some high-frequency signals,
such as local structures, edges and lines. Furthermore, many
studies have pointed out [56, 57, 53] that vision transform-
ers perform poorly when trained from scratch, due to the
lack of local inductive bias. Besides, the standard multi-
head attention mechanism brings huge train burden. For in-
stance, a feature map of size 56×56×96 costs 2.0G FLOPs
in one Multi-head Self Attention (MSA) [47], while the en-
tire model of ResNet-18 [13] only requires 1.8G FLOPs.
This problem severely hinders the application of vision
transformers to broader tasks.

Second, the text-image fusion modules adopted by previ-
ous works almost don’t achieve high-efficient cross-modal
text-image fusion. Although the previously adopted cross-
modal attention [52] extracts long-range relationships and
achieves spatial fusion well, it brings a heavy training bur-
den due to its high computational loss. Besides, since im-
age and natural language descriptions belong to different
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Figure 1. (a) The architecture of Mix Attention, which can si-
multaneously capture global relationships (low-frequency) and lo-
cal details (high-frequency) while enjoying linear computational
complexity. (b) The Fourier Spectrum of CNN [13] and Attention
[47]. The lighter the color, the larger the magnitude. A pixel that
is closer to the center means a lower frequency. More details are
in Section 3.2.

semantic levels [3, 55, 24], we argue that attention-based
text-image fusion is not effective enough. Recently, many
works achieve text-image fusion by affine transformation
[43, 24, 54], which maps text conditions to each chan-
nel separately. Although they achieve competitive results,
they lack information fusion across channel dimensions af-
ter affine transformation. Third, the semantic alignment
tool DAMSM ignores the representation learning of text
features, which blocks the generator from further generat-
ing text-matching images. The DAMSM [52] uses bidirec-
tional LSTM [15] to extract text features. Although LSTM
captures context relationships well, it ignores the attention
between different words in a sentence, which cause some
irrelevant words to impose an impact on model. Besides,
the DAMSM supervises the generator with word loss and
sentence loss together. We argue that the word loss can’t
provide positive feedback to the generator, due to the differ-
ent semantic levels between image and words [3].

To address them, we propose TransT2I, a transformer-
based GAN for text-to-image synthesis. For the first ob-
stacle, we propose a novel attention method (Mix Atten-
tion), which can simultaneously capture global relation-
ships (low-frequency) and local details (high-frequency)
while enjoying linear computational complexity. In Mix
Attention, we disentangle high/low frequency signals by
dividing the input feature into two groups. Furthermore,
we adopt the lightweight attention module to strike a trade-
off between model capacity and computational efficiency.
For the second obstacle, we propose Conditioned Fusion
Instance Normalization (ConIN), which can achieve effec-
tive cross-modal text-image fusion with slight computa-
tional cost. We accept the text condition through affine
transformation and add an additional fully connected Lay-

ers to facilitate the channel fusion of cross-modal informa-
tion. In addition, before and after the module, we stack
the instance normalization method to improve the stability
of training. For the third obstacle, we propose Deep text-
Image Contrastive Model (DTMCM), which can reflect the
representation learning of text features well. For text en-
coders, before the original LSTM, we add several trans-
former encoders to show attention between different words
in a sentence to achieve learning of text features. To bet-
ter guide the generator, we remove the word loss and use
the sentence loss to provide feedback to generator. More
importantly, our proposed DTMCM can be utilized as a
general-purpose cross-modal alignment tool like DAMSM
for text-to-image synthesis.

Extensive experiments on three challenging benchmarks
demonstrate the superiority over previous text-to-image
works, proving the promise of transformer-based GAN for
text-to-image synthesis. On CUB and Multi-modal CelebA-
HQ, TransT2I achieves a state-of-the-art FID 10.06 and
11.87 that exceeds all previous works. On COCO, TransT2I
achieves a competitive FID 11.94 only with 42% trainable
parameters compared with current SOTA model Lafite [62].

2. Related Work

Text-to-Image Synthesis. In 2016, Reed et al. first pro-
posed using conditional generative adversarial networks
to generate images under text conditions [35]. To fur-
ther generate the desired images, Zhang et al. proposed
stacking multiple generator-discriminator pairs to gradu-
ally generate high-quality images from coarse to fine under
text conditions [59]. During training, multiple generator-
discriminator pairs are required to coordinate to generate
higher quality images. Then, Xu et al. followed the archi-
tecture and proposed AttnGAN [52] to achieve word-level
fine-grained generation by introducing a word-level atten-
tion mechanism. For a period of time, the stacked archi-
tecture has become the basic method for text-to-image syn-
thesis [5, 37, 60, 23, 31]. Due to the limitations of stacked
architecture, Ming et al. proposed DF-GAN [44], which
aims to utilize single generator to achieve text-to-image
synthesis. Recently, some works [34, 8] attempt to train
auto-regressive models based on transformers to achieve
zero-shot text-to-image synthesis, but the expensive train-
ing costs hinder most researchers. Besides, the methods of
diffusion model [12, 39] have shown wide potential value.

Transformer-based GAN. Jiang et al. [16] first proposed
to employ pure transformer to build GAN, in which grid
attention was utilized to lower computational loss. Later,
more advanced performance was achieved based on vision
transformer [22, 29, 61, 57]. Then, the StyleSwin [57] com-
bine StyleGAN [19] and Swin transformer [26] to construct
transformer-based GAN, which showed more competitive

2
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Figure 2. The architectures we investigate. (a) The baseline ar-
chitecture is comprised of a series of transformer blocks hierarchi-
cally. (b) Our proposed TransT2I builds a novel transformer-based
GAN for text-to-image synthesis, which consists of 7 TransT2I
Blocks from 42 to 2562. The “Sentence” stands for sentence vec-
tor encoded by pretained text encoder of proposed DTMCM. The
“Noise” stands for random noise sampled from Gaussian distri-
bution. The “M” stands for MLP. More details are in Section 3.

performance. But these works almost are only associated
with unconditional image synthesis. Unlike previous works,
we propose TransT2I to explore transformer-based GAN for
text-to-image synthesis.

3. Method
In this paper, we explore building a transformer-based

GAN for text-to-image synthesis. We propose TransT2I,
which contains three innovative components: Mix Atten-
tion, Conditioned Fusion Instance Normalization (ConIN)
and Deep Text-Image Contrastive Model (DTMCM).

3.1. Model Overview

The architecture of generator is shown in Figure 2. We
propose TransT2I, a transformer-based text-to-image gen-
erative adversarial network. First, inspired by StyleGAN
family [19, 17], we replace random noise with learnable
constants as the input to first layer, and accept cross-modal
text conditions in the way of style injection [19]. Next,
we propose an innovative basic computational block (called
TransT2I Block). Different from the standard vision trans-

former block [10, 47], our proposed TransT2I Block can
achieve the trade-off between computational efficiency and
model capability. In TransT2I Block, we propose Mix At-
tention, which can simultaneously capture global relation-
ships and local details while enjoying linear computational
complexity; besides, we propose Conditioned Fusion In-
stance Normalization, which can achieve effective cross-
modal text-image fusion while helping to stabilize the train-
ing process.

In generator, we first generate a random noise sampled
from Gaussian distribution. Then, text descriptions are en-
coded into sentence vectors by our proposed pretrained text
encoder. We concatenate random noise with sentence vec-
tor to get the input to model. From 42 to 2562 , the generator
consists of 7 TransT2I Blocks. The mathematical form of
TransT2I Block is shown below:

zĥi = MixAttn(ConIN(hi−1, s)) + hi−1,

hi = MLP(ConIN(ĥi, s)) + ĥi,
(1)

where hi is the output feature map of TransT2I Block i, s is
text condition, ConIN is Conditioned Fusion Instance Nor-
malization, MixAttn is Mix attention and MLP is Multilayer
Perceptron [45], respectively. We will introduce them next.

3.2. Mix Attention

The architecture of Mix Attention is shown in Figure
1(a). The proposal of Mix Attention is motivated by two
aspects. First, many previous studies have shown that
attention-based mechanisms can capture low-frequency sig-
nals (global relationships) well, while it’s incompetent to
capture high-frequency signals (local details) [41, 28]. Sec-
ond, transformers are data-hungry for vision tasks due to
the lack of local inductive bias like CNNs [56, 57]. How-
ever, some public datasets for text-to-image synthesis aren’t
large enough for training transformers from scratch, such
as: CUB [48], Multi-Modal CelebA-HQ [51]. To address
these, we propose Mix Attention.

LightMSA. The architecture of LightMSA is shown in
Figure 3(a). In order to achieve a trade-off between com-
putational efficiency and model capacity, we introduce
LightMSA in Mix Attention. The standard multi-head at-
tention mechanism brings huge training burden due to its
quadratic computational complexity. Unlike the standard
multi-head attention and SRA [49], we utilize the average
pooling operation on the transformed K and V matrix to
reduce the computational loss, thus achieving linear com-
plexity. The Q, K and V matrix is then processed by a
fully connected layer. Finally, the obtained results are sent
to calculate the multi-head dot-product attention.

ConvNets. The architecture of ConvNets is shown in Fig-
ure 3(b). To better capture high-frequency signals and in-
troduce local inductive bias into our model, we introduce

3
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Figure 3. (a) LightMSA: The low-frequency module of proposed Mix Attention, in which we employ avgpool operation to lower compu-
tational loss. (b) ConvNets: The high-frequency module of proposed Mix Attention, in which we stack several convolutional networks to
introduce local inductive bias. (c) Conditioned Fusion Instance Normalization (ConIN): The module aims to achieve effective cross-modal
text-image fusion, in which “ InsNorm” stands for instance normalization.

ConvNets in proposed Mix Attention. ConvNet consists of
3×3 convolution networks and depth-wise convolution net-
works. The purpose of depth-wise convolution networks is
to enhance the feature modeling across spatial dimensions.

The Parallel Design. In order to better capture the global
relationships and local details, we need to utilize a proper
way to combine these two different modules. Some previ-
ous works [26, 49] tend to combine the two different atten-
tion modules in a successive way. However, we argue that
the successive way will make the interaction between the
two modules even less interweaved. So, we adopt the paral-
lel design [4, 57] to combine LightMSA and ConvNets.

First, we divide the input feature map into two groups
by channel cutting. Each group corresponds to a module.
Then, the output feature maps of these two modules are con-
catenated together. The concatenated results are fed into the
following fully connected network to fuse the learnable re-
lations across the channel dimensions. The channel division
ratio is set to 0.5 by default.

Therefore, our designed Mix Attention can simultane-
ously capture low-frequency signals (global relationships)
and high-frequency signals (local details) with linear com-
putational complexity. As shown in Table 2, compared with
other attention mechanisms, our proposed TransT2I obtains
excellent results.

3.3. Conditioned Fusion Instance Normalization

It’s our belief that a powerful cross-modal text-image fu-
sion module is not only beneficial to generate higher-quality
images, but also facilitates the stabilization of training pro-
cess. Drawing by this, we propose the Conditioned Fusion
Instance Normalization module (ConIN). The architecture
of ConIN is shown in Figure 3(c).

First, inspired by DCGAN [33] and StyleGAN family
[19, 17, 18], in order to stabilize training process, we use
instance normalization to process the input feature map F ∈

RB×C×H×W , the mathematical form is as follows:

InsNorm(fi) =
fi−µ(fi)
σ(fi)

, (2)

where fi is the i-th channel of input feature map, µ(fi) is
the mean of fi, σ(fi) is the variance of f i, each channel
is separately normalized, respectively. Then, in order to
achieve effective cross-modal text-image fusion, we stack
the affine transformation [6, 27] to accept text conditions.
For the affine operation, we stack two MLPs [45] to predict
channel-wise scaling parameters and bias parameters for a
given input feature map X ∈ RB×C×H×W . The mathe-
matical form is shown in the following:

ys = MLP1(s),

yb = MLP2(s),

x̂i = ysi · xi + ybi ,

(3)

where ys are the scaling parameters, yb is the bias param-
eters, s is the text condition, x̂i and xi represent the i-th
channel of the output and input feature map, respectively.
After the affine transformation, we employ a ReLU function
to add nonlinearity to fusion process [43]. Since the affine
transformation only fuses the text condition separately for
each channel, it lacks information fusion across channel
dimensions. Therefore, we additionally add a fully con-
nected layer functioned on channel dimensions to facilitate
the text-image fusion. Finally, we use instance normaliza-
tion again to normalize the output feature map.

As shown in Table 3, we still explore other style in-
jection methods for our TransT2I. Extensive experiments
demonstrate the effectiveness and superiority of ConIN.
Compared with previous attention-based fusion methods
[52, 23], ConIN has lower computational loss. Compared
with concatenation [36] and affine [44, 54] methods, ConIN
enhances the text-image fusion across channel dimensions
with slight computational cost.
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Figure 4. (a) Deep Text-Image Contrastive Model (DTMCM): We propose a new text-image aligned tool DTMCM, which can achieve
better representation learning of text features than DAMSM [52]. (b) Deep Global Fusion Discriminator: In order to achieve global text-
image fusion in discriminator, we introduce the CBAM module [50] to enhance text-image fusion across spatial and channel dimensions.

3.4. Deep Text-Image Contrastive Model

The previous DAMSM [52] suffers from two problems.
First, the text encoder adopted by DAMSM ignores the at-
tention between different words in a sentence. Second,
DAMSM loss includes word loss and sentence loss. We
argue that the word loss can’t provide positive feedback to
generator. The word loss computes the similarity between
sub-regions of image and words in a sentence. Natural lan-
guage descriptions are high-level semantics, while the sub-
regions of image are relatively low-level [3, 55, 24]. Thus,
it’s unreasonable to use word loss to supervise generator to
synthesize text-matched images. To solve these, we pro-
pose Deep Text-Image Contrastive Model (DTMCM), the
architecture is shown in Figure 4(a).

The Image Encoder. The image encoder we follow the de-
sign of DAMSM [52], which is built upon the Inception-v3
model [42] pretrained on ImageNet [38]. Meanwhile, the
global feature vector g ∈ R2048 is extracted from the last
average pooling layer of Inception-v3. Finally, we convert
the image features to a common semantic space of text fea-
tures by adding a linear network: v = Wg, where W is
the learnable parameter matrix, v is the global vector for
the whole image.

The Text Encoder. Unlike DAMSM [52], we propose a
novel text encoder to facilitate representation learning for
text features. First, we get the initial word matrix. Then,
the word matrix is processed by n standard transformer en-
coders [47] (default n = 3). The self-attention module can
calculate the attention of different words in a sentence and
enhance the impact of important words on model. Finally, a
bidirectional LSTM is used to extract the context relation-
ships in a sentence, and the result is the output of our text
encoder. Compared with the text encoder in DAMSM, we
can better reflect the attention of different words in a sen-

tence, and thus better realize the representation learning of
sentence features.

The DTMCM Loss. The DTMCM loss is employed to
compute the semantic loss between entire image and sen-
tence, which is aimed to supervise the generator to syn-
thesize text-matching images. Unlike DAMSM [52], the
DTMCM loss only calculates sentence loss. First, for the
image-sentence pairs I and T, we calculate the cosine sim-
ilarity, the mathematical form is as follows:

Sim(I,T) = v>e
||v||||e|| , (4)

where v is image vector and e is sentence vector, re-
spectively. Following previous work [62, 52], we define
the loss function as the negative log posterior and prior
probability that the images are matched with their corre-
sponding text descriptions. For a batch of image-sentence
pairs

{
(Ii,Ti)

M
i=1

}
, the posterior and prior probability of

sentence Ti being matching with image Ii is computed as:

L1 = −
M∑
i=1

log
exp(γ1Sim(Ii,Ti))∑M
j=1 exp(γ1Sim(Ii,Tj))

,

L2 = −
M∑
i=1

log
exp(γ2Sim(Ti, Ii))∑M
j=1 exp(γ2Sim(Ti, Ij))

,

(5)

where γ1, γ2 are hyper-parameters. The total DTMCM loss
is defined as:

LDTMCM = L1 + L2. (6)

By this design, DTMCM loss can provide better feed-
back to the generator than DAMSM. As shown in Table
4, extensive experiments confirm the effectiveness and su-
periority of DTMCM. As shown in Table 5, compared
with CLIP [33], DTMCM is more lightweight and effi-
cient, which confirms that DTMCM is more suitable for our
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Method CUB COCO MM CelebA-HQ -

FID↓ IS↑ R-precision↑ FID↓ R-precision↑ FID↓ R-precision↑ Params Speed

StackGAN++ [60] 15.30 4.04 ± .06 - 81.59 - - - - -
AttnGAN [52] 23.98 4.36 ± .03 0.246 35.49 0.183 125.98 0.233 169M 0.07s
DM-GAN [63] 16.09 4.75 ± .07 0.287 32.64 0.236 131.05 - 46M -
DAE-GAN [37] 15.19 4.42 ± .04 0.321 28.12 0.257 - - - -
XMC-GAN [58] - - - 29.63 0.278 - - 166M
TediGAN [51] - - - - - 106.37 0.275 - -
DF-GAN [43] 14.81 5.10 ± .- - 0.306 19.32 0.278 137.60 - 19M -
VQ-Diffusion-B [12] 11.94 - - 19.75 - - - 370M 6.42s
SSA-GAN [24] 15.61 5.17 ± .08 0.326 19.37 0.264 - - 110M -
Lafite [62] 11.27 5.58 ± .- - 0.350 10.32 0.318 12.54 - 75M 0.06s

TransT2I (ours) 10.06 5.42 ± .02 0.369 11.94 0.338 11.87 0.335 32M 0.03s

Table 1. The results of IS, R-precision and FID compared with the state-of-the-art methods on the test set of CUB, Multi-Modal CelebA-
HQ and COCO. ↓ means lower is better. ↑ means higher is better. The speed refers to the time to generate one image, which is tested on an
NVIDIA RTX 3090.

model. More importantly, the proposed DTMCM also can
be utilized as a general-purpose tool to achieve cross-modal
semantic supervision for text-to-image synthesis.

3.5. Discriminator and Loss Function

Deep Global Fusion Discriminator. The architecture of
discriminator is shown in Figure 4(b). Previous works
[36, 44, 24] tend to roughly concatenate text features and
visual features in the discriminator, and following convolu-
tional networks are used to facilitate the fusion of the two
features. We argue that pure convolutional networks are
beneficial to extract local features, but can‘t achieve global
cross-modal text-image fusion. The recent RAT-GAN [54]
notices the problem, but only enhanced the text-image fu-
sion across spatial dimensions. Different from previous
works, we introduce the CBAM [50] module in discrimina-
tor to facilitate global cross-modal text-image fusion across
spatial and channel dimensions.

Loss Function. Similar to DF-GAN [44], we employ hinge
loss as the discriminator loss. In order to smooth the gradi-
ent, we adopt the MA-GP loss [44]. The training loss of
discriminator is as follows:

LDadv = Ex∼Pdata
[max(0, 1−D(x, s))]

+
1

2
Ex∼PG

[max(0, 1 +D(x̂, s))]

+
1

2
Ex∼Pdata

[max(0, 1 +D(x, ŝ))],

(7)

where x is real image, x̂ is generated image, s is matched
sentence, ŝ is unmatched sentence, D is the discriminator,
respectively. The training loss of generator is as follows:

LG = λ1LDTMCM + LGadv,
LGadv = −Ex∼Pdata

[D(x̂, s)],
(8)

where λ1 is a hyper-parameter, respectively.

4. Experiments

In the section, we introduce the datasets, training details,
and evaluation details. Then, we conduct our experiments
on three challenging datasets to verify the effectiveness and
superiority of our proposed TransT2I.
Datasets. We evaluate the proposed model on three chal-
lenging datasets, i.e., CUB bird [48], COCO [25] and Multi-
Modal CelebA-HQ [51]. The COCO datasets contain 80k
images for training and 40k images for testing. Each image
has five language descriptions. The CUB bird datasets (200
categories) contain 8855 training images and 2933 testing
images. Each image has 10 text descriptions. The Multi-
Modal CelebA-HQ datasets contain 24k images for training
and 6k images for testing. Each image has 10 language de-
scriptions. All the images are scaled to resolution 256×256.
Training Details. Our model is implemented in PyTorch.
The Adam optimizer [20] with β1 = 0.0 and β2 = 0.9 is
used in the training. The learning rate is set to 5 × 10−5

for generator and 2 × 10−4 for discriminator according to
TTUR [14]. The hyper-parameters λ1, γ1 and γ2 are set to
0.02, 10 and 10, respectively.
Evaluation Details. The Fréchet Inception Distance (FID)
[14], Inception Score (IS) [40], and top-1 R-precision [52]
are used to evaluate the performance of our work. For FID,
it computes the Fréchet distance between the distribution
of the generated images and real-world images in the fea-
ture space of a pre-trained Inception v3 network [42]. For
IS, it computes the Kullback-Leibler (KL) divergence be-
tween a conditional distribution and marginal distribution.
Lower FID and higher IS mean model achieves better per-
formance. For R-precision, we use CLIP [32] to calculate
the cosine similarity between original image and given de-
scription. Following previous works [24, 43], we do not
use IS on COCO and Multi-Modal CelebA-HQ datasets be-
cause it can’t evaluate the image quality well.
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A slightly overcooked 
homemade personal 
sized pizza with meat 
and red peppers.

A police man 
on a motorcycle 
is idle in front 
of a bush.

The cabin is very 
clean and empty 
filled with wood.

Two people in a 
speed boat on a 
body of water.

This bird has a grey 
head, a short flat 
beak and long legs.

The small bird has 
a dark tan head and 
a light grey body.

This bird is white and 
red in color with a 
brown beak and dark 
eye rings.

This bird has a white 
belly and breast, with 
a blue crown and 
nape.
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A small bird has a 
blue body, a short 
beak, and gray tips 
on the tail.

A grassy field 
filled with wild 
animals underneath 
a cloudy sky.

Figure 5. Qualitative comparison between AttnGAN [52], DF-GAN [43], and our proposed TransT2I conditioned on text descriptions from
the test set of COCO datasets (1st - 5th columns) and CUB datasets (6th - 10th columns).

Te
di

G
A

N
Tr

an
sT

2I

She is young and 
wears heavy makeup.

She is smiling and 
wears lipstick.

The woman has 
mouth slightly open.

The man has black 
hair and eyeglasses.

He has big eyes and 
pointy nose.

Figure 6. Qualitative comparison between TediGAN [51] and our
proposed TransT2I conditioned on text descriptions from the test
set of Multi-Modal CelebA-HQ [51].

Moreover, we evaluate the number of parameters
(Params) and inference speed (Speed) to compare with cur-
rent methods.

4.1. Quantitative Evaluation

As shown in Table 1, we conduct the quantitative com-
parison between our proposed FuseGAN and previous
methods, such as: AttnGAN [52], StackGAN++ [60], DF-
GAN [43], Lafite [62]. On three challenging datasets, our
proposed TransT2I demonstrates the state-of-the-art perfor-
mance over prior text-to-image works, proving the promise
of transformer-based GAN for text-to-image synthesis. On
CUB [48] and Multi-modal CelebA-HQ [51], TransT2I
achieves a state-of-the-art FID 10.06 and 11.87 that exceeds
all previous works. On COCO [25], TransT2I achieves
a competitive FID 11.94 only with 42% parameters com-
pared with current SOTA model. On CUB datasets [48],
compared with the single-stage baseline DF-GAN [43], our
proposed TransT2I decreases FID from 14.81 to 10.06 and
improves IS from 5.10 to 5.86, R-precision from 0.306 to
0.369. On Multi-Modal CelebA-HQ datasets, TransT2I
achieves state-of-the-art performance, which decreases the

Variant FID ↓ R-precision ↑
Mix Attention (ours) 10.06 0.369

w/o LightMSA 15.89 0.312
w/o ConvNets 14.88 0.328
w/o Parallel Design 13.83 0.330

→ Grid Self-Attention [16] 18.34 0.258
→ Double Attention [57] 16.24 0.306
→Multi-axis Self-Attention [61] 14.35 0.351

Table 2. Ablation Study of Mix Attention on the test set of CUB.
↓ means lower is better. ↑ means higher is better.

current SOTA FID from 12.54 to 11.87. On COCO datasets,
compared with current state-of-the-art model Lafite [62],
our proposed TransT2I achieves comparable performance,
which TrasnT2I improves R-precision from 0.306 to 0.369.
Compared with diffusion methods VQ-Diffusion-S [12],
our proposed TransT2I achieves more advanced perfor-
mance, which decreases FID from 30.17 to 11.94. Impor-
tantly, our TransT2I only requires 0.03s to generate one im-
age, which is almost 210× faster than VQ-Diffusion-B.

4.2. Qualitative Evaluation

As shown in Figure 5, we conduct the qualitative com-
parison between our proposed TransT2I, DF-GAN [43]
and AttnGAN [52] on CUB datasets and COCO datasets.
TrasnT2I generates realistic and semantically consistent im-
ages. For instance, in the 3-nd column, our proposed
TransT2I generates realistic images, while the image gener-
ated by AttnGAN and DF-GAN appears blurry and seman-
tically inconsistent. In the 7-th column, given the sentence
“The small bird has a dark tan head and a light grey body”,
the images generated by AttnGAN and DF-GAN don’t ap-
pear “grey body”, while our proposed TransT2I mentions
all attributes. As shown in Figure 6, we conduct the qualita-
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Figure 7. Frequency magnitude from 4 output channels of
LightMSA and ConvNets in the proposed Mix Attention. The
lighter the color, the larger the magnitude. A pixel that is closer to
the center means a lower frequency.

Variant FID ↓ R-precision ↑
ConIN (ours) 10.06 0.369

w/o Linear layer 13.69 0.302
w/o Instance Normalization 19.88 0.227

→ AdaIN [19] 15.31 0.288
→ Affine [44] 16.14 0.303
→ CBN [1] 15.25 0.291

Table 3. Ablation Study of ConIN on the test set of CUB. ↓ means
lower is better. ↑ means higher is better.

tive comparison between our proposed FuseGAN and Tedi-
GAN [51] on Multi-Modal CelebA-HQ datasets. Compared
with TediGAN, TransT2I significantly improves the quality
of generated images. For example, in the 4-th column, the
image generated by TediGAN doesn’t involve the attribute
of “eyeglasses” and has some blur, while TransT2I gener-
ates clear and text-matching images.

4.3. Ablation Study

To verify the superiority of each component in our pro-
posed TransT2I, we deploy our experiments on the CUB
test set [48].
Mix Attention. As shown in Table 2, we conduct experi-
ments to verify the effectiveness of MixAttention. Our at-
tempts to remove LightMSA or ConvNets resulted in per-
formance degradation. Furthermore, our attempt to replace
the parallel design with a successive way also resulted in
poor performance. Compared with the previous attention
methods Grid Self-Attention [16], Double Attention [57]
and Multi-axis Self-Attention [61], Mix Attention is more
suitable for our work and obtains better performance. As
shown in Figure 7, we show the visualization results of
LightMSA and ConvNets. We show the frequency magni-
tude of LightMSA and ConvNets, which indicates that the
LightMSA tends to capture low-frequency signals and the
ConvNets tends to capture high-frequency signals.
ConIN. As shown in Table 3, we conduct experiments to

Variant FID ↓ R-precision ↑
DTMCM (ours) 10.06 0.369

w/ Text Encoder in DAMSM [52] 14.72 0.287
w/ Words Loss 17.38 0.247
→ DAMSM 17.91 0.233

AttnGAN w/ DAMSM 23.98 0.246
AttnGAN w/ DTMCM (ours) 19.93 0.265

Table 4. Ablation Study of DTMCM on the test set of CUB. ↓
means lower is better. ↑ means higher is better.

Variant Params Time ↓ FID(CUB) ↓ FID(COCO) ↓
DTMCM 32M 13mins 10.06 11.94
CLIP [33] 150M 20mins 12.14 12.79

Table 5. The comparison between the proposed DTMCM and
CLIP(ViT-B/32) when used in our TransT2I. Time refers to the
cost of training TransT2I one iteration on CUB with an NVIDIA
RTX 3090 GPU. DTMCM is more efficient and lightweight for
our TransT2I.

verify the effectiveness of ConIN. Experiments verify that
linear layers and instance normalization have a positive im-
pact on our model. Linear layers enhance the fusion of
text-image information across channels, while instance nor-
malization significantly improves performance. Besides,
we compare with AdaIN [19], CBN [1] and affine [44].
Our proposed ConIN is more suitable for our model and
achieves better results.
DTMCM. As shown in Table 4, we conduct experiments
to verify the effectiveness of DTMCM. First, the experi-
ments verify the superiority of the designed text encoder of
DTMCM and the removal of word loss. Then, DTMCM
achieves more advanced performance compared with pre-
viously adopted alignment tools DAMSM [52] and CLIP
[62, 32]. Finally, we try to adopt DTMCM in AttnGAN
[52], which significantly improves the performance. As
shown in Table 5, we compare our DTMCM with CLIP,
and the experimental results demonstrate the effectiveness
for our TransT2I.

5. Conclusion
In this paper, we propose TransT2I, a transformer-based

GAN for text-to-image synthesis. We propose a novel at-
tention mechanism Mix Attention, which can simultane-
ously capture global relationships and local details while
enjoying linear computational complexity. Besides, we pro-
pose Conditioned Fusion Instance Normalization and Deep
text-image Contrastive Model to further improve model ca-
pacity. Extensive experiments on three challenging bench-
marks demonstrate the state-of-the-art performance. In the
future, we try to employ novel attention mechanisms to
build a transformer-based GAN for text-to-image synthesis.
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